<p class="ql-block">老师们大家好,从这一讲开始呢,我们进入到数量关系的学习主题。那么今天我们重点讨论的是重视运算意义的理解渗透模型意识。首先我们来看看数与代数这个领域,2011版的课标到了2022版发生了哪些变化?</p><p class="ql-block"><br></p><p class="ql-block"> 在第一个领域当中,2011版的课标有这样的6个主题,而2022版把它整合为两个主题数与运算,前面几讲我们已经涉及到了。第二个主题就是数量关系,我们来看看哪些东西整合在数量关系这个学习主题下呢!探索规律,式与方程,正反比例通通进入了数量关系的主题下,当然数量关系还包括我们平时所说的问题解决,主要是通过问题解决来理解数量关系。常见的量移至到综合与实践的领域中学习,这是一个主要的变化,那我们今天开始就聚焦数量关系这个主题来和大家进行分享。 </p><p class="ql-block"><br></p><p class="ql-block"> 首先我们来看,它的一致性表现在哪里?以数量关系为核心的问题解决就是整个数量关系这个学习主题所具有的一致性,数量关系这个主题我们大约分为了三个阶段。第一个阶段主要是对运算意义的理解,也就是在小学一二年级阶段,孩子们通过数的学习,运算的学习,要走进加法意义,减法意义,乘法意义,除法意义,那这些算式的意义如何理解?也就是说你为什么此时做加法,不做减法呢?你为什么此时做乘法,不做除法呢?加减乘除的意义到底是什么呢?怎么理解这个符号的意义?而我认为第一阶段四则运算的意义正是未来第二个阶段建立加法模型和乘法模型的重要基础。我们再来看第二阶段,建立模型,经过前两年的经验的积累,经过前面对加减乘除运算意义的感悟、体会和简单的问题解决。到了第二阶段,我们将继续在真实的生活情境中发现、提出问题,分析解决问题,此时我们有了重要的任务,经过几年的问题解决,我们要回过头来看一看,这些所有的问题解决都没有离开数量关系。那么在众多的故事中,有没有能够通过我们对数量关系的抽象概括把这些故事中的数量进行一个分类,建立起一个数量关系的模型,也就是说在运算意义的基础上、在解决问题经验的基础上,第二学段我们将建立加法模型,即分量加分量等于总量,还要建立乘法模型,单价乘数量等于总价,速度乘时间等于路程,这两个模型是在抽象、概括的基础上发现的重要的关系,这样就概括了前面这几年用加减乘除意义解决问题的基本的数量关系。到了第三阶段,就是乘法模型、加法模型的拓展应用,有了第二阶段的模型,第三阶段是模型的拓展应用。主要的内容,就是用字母表示关系或者规律,还有性质。</p><p class="ql-block"><br></p><p class="ql-block"> 大家知道在2011版的课标中,我们提出的是字母表示数,而在这版的课标中,提出的是字母表示关系、规律或者性质,那么它包括的主要内容有常见的数量关系,常见的数量关系就是我们在两个模型当中所遇到的关系当然还有运算定律。大家熟悉的五大运算定律,加法交换结合律,乘法交换结合律,还有乘法的分配律,还有一些面积、体积的计算公式,当然还有一些其他的关系,比如说像比例当中的一些数量关系也会在这里出现,那么这些呢都是模型的应用,尤其是方程,我们移至到第四个阶段。那么小学留下的用字母表示关系、规律和性质,它的重点、核心依然是以数量关系为核心的问题解决。老师们至此,大家看一看,数量关系这样一个学习主题,他所划分的三个阶段,一二三,每个阶段所要解决的重点问题、核心问题,运算意义的理解,模型的建立及模型的拓展应用,那么接下来的三讲,我就一一对这三个阶段和老师做一个分享。那么我在这里还想说以数量关系为核心的问题解决就是要在解决的问题的过程中,让学生不断的发现、提出问题,分析解决问题。培养学生的四基四能,落实核心素养、发展学生的推理意识、模型意识、符号意识、应用意识。</p><p class="ql-block"><br></p><p class="ql-block"> 接下来我们就进入到第一个阶段,理解运算意义,解决实际问题。老师们,理解加减乘除之间的意义,这是重中之重,我们认识数学会运算,不仅仅是只为了运算,我们要用数的概念,利用数量之间的关系,通过加减乘除计算的正确判断来进行问题解决,所以我们说运算意义的理解,不仅是数量关系解决问题的基础,也是正确进行运算的基础。理解四则运算意义,是数量关系解决问题的开始,所以它十分重要,我们要重视对运算意义的教学,加减乘除运算意义的核心是理解关系,它也是我们解决问题当中的重要概念。要让学生在解决问题的活动中积累原型,让他们学会思考在什么情况下用加、用减、用乘、用除来进行计算呢?从一年级开始,一入学孩子们认识123,随着对数的认识,也是我常说的随着自然数的产生运算也就相伴而生,那么在这个过程当中,他们开始学习了加法、减法,逐步认识四则运算及其关系,用其分析实际情况中的数量关系是分析解决问题的需要,也是数量关系主题的重要学习内容,那么随着学习内容的拓展,逐步将四则运算与加法模型乘法模型建立联系,而这两个模型正是在四则运算的基础上来建立起来的,我们来看加减法的认识。女孩子一手拿着三只黄气球,一只手拿着一只蓝气球,把两边的气球合并成一束,这是几个气球呢?在看图,解决这个问题的过程当中体会分与合的过程,初步来感知算式的意义,我们看男孩子手里边拿着4个气球,蓝气球飞走了,还剩下几个气球?显然这里涉及到的是加法和减法的运算,3加1等于4,把两部分合并在一起,4减1呢又等于3,从总数量里边减掉一部分,还剩下另一部分,就是在孩子们的活动中,真实的问题解决中气球的合与分的过程,感受感知感悟加法与减法算式的意义,初步理解加法运算算式,减法运算算式所表达的数量关系。我们很多有经验的老师都知道,接下来还可以通过学生说一说、画一画、摆一摆等亲自参加的活动中,在解决具体问题的过程中应用几何直观理解加减法的意义,体会解决问题的过程当中所蕴含的道理,来解释计算结果的实际意义,所以加法减法不分家。我们知道减法就是加法的逆运算,如何建立他们之间的这样一种关系,在我们的教材中在我们的老师教学中都会有很多的素材。大家看原来有3个苹果,又买了一个。原来有3个红色的气球,又买了一个绿色的气球.树上有3只小鸟,又飞来了1只小鸟,虽然背景不一样,故事不一样,但是在这个过程当中解决问题当中,都会感受到这是一部分,那是一</p><p class="ql-block"><br></p><p class="ql-block">下来我们就进入到第一个阶段,理解运算意义,解决实际问题。老师们,理解加减乘除之间的意义,这是重中之重,我们认识数学会运算,不仅仅是只为了运算,我们要用数的概念,利用数量之间的关系,通过加减乘除计算的正确判断来进行问题解决,所以我们说运算意义的理解,不仅是数量关系解决问题的基础,也是正确进行运算的基础。理解四则运算意义,是数量关系解决问题的开始,所以它十分重要,我们要重视对运算意义的教学,加减乘除运算意义的核心是理解关系,它也是我们解决问题当中的重要概念。要让学生在解决问题的活动中积累原型,让他们学会思考在什么情况下用加、用减、用乘、用除来进行计算呢?从一年级开始,一入学孩子们认识123,随着对数的认识,也是我常说的随着自然数的产生运算也就相伴而生,那么在这个过程当中,他们开始学习了加法、减法,逐步认识四则运算及其关系,用其分析实际情况中的数量关系是分析解决问题的需要,也是数量关系主题的重要学习内容,那么随着学习内容的拓展,逐步将四则运算与加法模型乘法模型建立联系,而这两个模型正是在四则运算的基础上来建立起来的,我们来看加减法的认识。女孩子一手拿着三只黄气球,一只手拿着一只蓝气球,把两边的气球合并成一束,这是几个气球呢?在看图,解决这个问题的过程当中体会分与合的过程,初步来感知算式的意义,我们看男孩子手里边拿着4个气球,蓝气球飞走了,还剩下几个气球?显然这里涉及到的是加法和减法的运算,3加1等于4,把两部分合并在一起,4减1呢又等于3,从总数量里边减掉一部分,还剩下另一部分,就是在孩子们的活动中,真实的问题解决中气球的合与分的过程,感受感知感悟加法与减法算式的意义,初步理解加法运算算式,减法运算算式所表达的数量关系。我们很多有经验的老师都知道,接下来还可以通过学生说一说、画一画、摆一摆等亲自参加的活动中,在解决具体问题的过程中应用几何直观理解加减法的意义,体会解决问题的过程当中所蕴含的道理,来解释计算结果的实际意义,所以加法减法不分家。我们知道减法就是加法的逆运算,如何建立他们之间的这样一种关系,在我们的教材中在我们的老师教学中都会有很多的素材。大家看原来有3个苹果,又买了一个。原来有3个红色的气球,又买了一个绿色的气球.树上有3只小鸟,又飞来了1只小鸟,虽然背景不一样,故事不一样,但是在这个过程当中解决问题当中,都会感受到这是一部分,那是一部分,我们要把两部分合并成一个整体,在这个过程当中,老师此时不要过早的把模型把这个关系式写出来,而是让学生多一些体验,多一些感受,多一些对分量分量总量之间关系的感悟,老师们从开始认识加减法时,就要沟通加减法的关系,有经验的老师在解决这些问题的时候,一定会再讲出新故事。小东一共有4个苹果,原来有3个,后来又买进来几个,你知道吗?你看用现在的苹果数减去原来的就是又买进来的,那么有意识的从加减法的这个逆运算的关系当中来理解数量关系,初步了解加法模型和它的变式,理解加减法运算之间的关系,为第二阶段进一步学习加法模型奠定基础,孩子们会画图,通过讲故事,通过直观的图,老师们看一看,不要过早的要求学生,都要做统一的线段图。他画出这种故事式的这样一种形象的直观图,只要把关系说清楚,我认为就很好。鼓励学生多种表征,用不同的图形,用不同的活动方式来认识理解加减法的这样的一个关系,我想对加减法有一定认识,进一步了解它们逆运算的关系,包括理解它们的运算意义和计算方法,利用运算的意义来解决问题,会随着学习内容的不断推进,而不断的拓展。从加减法运算意义拓展为乘除法的运算意义,从我们整数的加减法,可以拓展到小数、分数的加减法,因此整数加减法的意义一定是重要基础,那么加减法的意义和利用加减法解决问题是数量关系的关键内容,核心内容,我们要给以高度的重视。在这里呢,我请老师们一起和我走进我的课堂,这两天呢,我有机会到我们的农村工作站和我们老师们一起走进课堂,来进行研究,大家看一看这段教学视频(两步问题解决),看看如何帮助学生建立好加减法算式的意义,为后续的模型的建立奠定基础,好我们一起来看。老师们,刚才我们看到的这个教学片段,就是想让学生在自己参与的学习活动的探索中,理解运算的意义,为后面</p> <p class="ql-block">为后面建立模型做好铺垫,猴子采桃的这样一个情境,通过有趣的情境调动孩子学习的兴趣,引导他们参与到问题中来。关键是理解什么呢,弟弟的桃子数加上哥哥的桃子数就等于桃子的总数,要理解这样一个关系,孩子的手势孩子的画图,孩子的小棒的拼摆,多种表征都在对加法算式意义的理解体会着求两个数量的合并用加法,进一步引导学生利用加法的意义来解决问题。在解决这个问题的过程当中我们把它演变成了两步解决的问题,猴哥哥采了15个桃,不直接告诉你怎么办,用一个小智慧人喊话的过程,让孩子们体会到,中间所隐含的重要的条件,小智慧人往前看了看要先求出哥哥的采桃数量也是用加法,这就是我们过去常说的大数、小数、差这三量的关系,今天我们也可以从部分量、部分量和整体这个角度来认识,5加10等于15,就是弟弟桃子的数量加上弟弟比哥哥多的数量得到哥哥的数量,再通过把弟弟和哥哥的数量合在一起,求出哥俩桃子的总数量。在这个过程当中,有的小朋友直接就用了题目里没有给到的15,通过这个讨论也让学生感受到要把你心里明白的事有效的用数学算式表达出来,这就是数学语言的表达,那么这两个算式都反映了加法的本质,体现了相同数</p> <p class="ql-block">么这两个算式都反映了加法的本质,体现了相同数量关系的模型,这样的学习过程为后续总量与分量模型的建立奠定了基础。从核心概念出发,辩论反思中明晰加法的本质,理解加法的意义,借助加法意义来理解减法,包括未来要学习的乘法、除法的意义,那么我们也想通过不断的学习,不断的梳理关系,建立结构来沟通加减乘除之间的关系,进一步理解加减乘除运算的意义,培养学生的推理能力和抽象能力。看图讲故事每个盘放了三个桃,4个盘可以放多少个桃子?3乘4等于12,理解这个算式的意义,就表达了4个3相加的意义,乘法与加法有关系,继续还可以讲出怎样的故事?12个桃子,3个桃子放一盘,可以放几盘呢?12除以3等于4盘,就是我们平时讲的大家都熟悉的包含除,同理12个桃子要平均放在4个盘里,每盘可以放几个桃,12除以4等于3,每盘放3个桃。这就是我们平常经常说的等分除。你看1乘2除。3.4.12这三个数量之间有怎样的关系,我想我们有这种内容结构整体化的这样一个角度,我们就可以从不同的维度,来理解数量之间的关系,我们就是这样通过引领学生在问题解决中特别是在比较分析中沟通加减法乘除法之间的关系,打通它们的关联,建立起一个整体的内容结构。</p><p class="ql-block"><br></p><p class="ql-block"> 最后给老师们提一点教学建议。第一学段加减乘除意义的学习,解决问题,我们首先要创设真实的情境,引导学生发现和理解数量关系,当然他的前提是读懂情境发现问题在这个基础上才能很好的去理解关系。第二为学生提供画图实物操作等多种表达的机会,自主参与学习的机会,来促进学生问题解决能力的提升。最后一个建议,就是我们一定要高度重视孩子们对四则运算意义的深度理解,为什么用加减乘除,只有理解了意义,才能为未来模型的建立奠定基础,才能更好的进行拓展应用。老师们,我们就讲到这里,谢谢大家!</p>