工作就用美篇工作版","guide_search_desc":"海量模板范文,一键做同款 工作就用美篇工作版","img_beautify_switch":0,"ad_free":0,"text_direction":"1","template":{},"container":{},"redirect":{"redirect_type":1,"img_url":false,"link_url":"/wap/downloadpage/backpage","button_bg_color":false,"button_desc":false,"redirect_desc":false},"edit_date_str":"更新于 2023-01-11","current_time":1743854162,"font_name":"","rcmd_meipian":0,"hide_article_link":0,"from_wechat":false,"topk_keywords":[{"name":"取值","score":0.492239},{"name":"函数","score":0.464521},{"name":"实数","score":0.453829},{"name":"成立","score":0.418973},{"name":"增大","score":0.330372},{"name":"范围","score":0.255476},{"name":"二次","score":0.235464},{"name":"一次函数","score":0.22788},{"name":"集锦","score":0.198507},{"name":"若求","score":0.19598}],"content":{"article_id":359183727,"content":[{"audio_music_id":0,"ext":{"unique_id":"bec3ed9859091fee3d6dd2fc202a6d2b"},"sectionPublished":true,"source":0,"text":"
1.问题:若A=(x|2a+1≤x≤3a-5),B=(x|3≤x≤22),求A属于B成立时,a的取值范围.
解:A包含于B有两种情况,
(1)当A=∅时,2a+1>3a-5,a<6,
(2)当A≠∅时∵A包含于B, 2a+1≤3a-5;
2a+1≥3;3a-5 ≤22,解得6≤a≤9.
综上可知:a≤9.
","type":1},{"audio_music_id":0,"ext":{"unique_id":"aa5847a7207d1d67036f70d61d1d635b"},"sectionPublished":true,"source":0,"text":"2.问题:已知集合A={xlx²+ax+b=0},B=(xlx²+cx+15=0},AUB={3,5},A∩B={3},求a,b,c的值_
解:∵A∩B={3},∴3是x²+cx+15的一个根,
∴3²+3C+15=0,3C=-15-9=-24,C=-8.
又∵AUB={3,5},A∩B={3},A≠B,∴A={3}.
∴3是x²+ax+b=0的唯一的实数根,
∴△=a²-4b=0,∴b=a²/4,代入方程x²+ax+b=0,3²+3a+a²/4=0.
解得a=-6,b=9,
综上所述:a=-6,b=9,c=-8
","type":1},{"audio_music_id":0,"ext":{"unique_id":"05d7cac0fd4f32bab62efb2c34d89762"},"sectionPublished":true,"source":0,"text":"3.问题:若对Vx>1,若x²-4x+a>0恒成立,则实数a的取值范围为( )。
若对Vx≤1,存在2<y<5,使得x²-4x+2a>2y-1成立,则实数a的取值范围是( )。
","type":1},{"audio_music_id":0,"ext":{"unique_id":"d4a11a0985fc4cff388e02df33c8d0dd"},"sectionPublished":true,"source":0,"text":"解析:由x²-4x+a≥0,得a≥4x-x²=-(x-2)²+4,则对V≥1,x² -4x+a≥0恒成立,可得a≥ 4。
记μ=x² -4x+2a,由二次函数定义知,二次函数的对称轴为x=2,所以函数值在x<2时随着x的增大而减小.记v=2y-1,一次函数的函数值随着自变量y的逐渐增大而增大,所以要不等式x²-4x+2a>2y-1恒成立,只需1²-4×1+2a≥2×2-1,解得a≥3.
","type":1}]},"ext":{"id":314201954,"article_id":359183727,"ip":"36.101.243.229","origin_status":0,"edit_from":0,"client_type":2,"password_v2":"","uv":3,"font_id":0,"title_style":"","rich_text_title":"","gift_switch":1,"deleted_at":0,"recycle_expired_at":0,"share_with_nickname":1,"enable_watermark":1,"music_id":0,"music_source":0,"_auto_update_time":"2023-02-02 15:13:42"},"extend":{"id":112000469,"article_id":359183727,"enable_download":1,"cover_width":1132,"cover_height":693}},"author":{"id":"6629284","nickname":"刘东民","head_img_url":"https://ss-mpvolc.meipian.me/users/6629284/bb92c29fbfd2400da5250fbecc2da3ad.jpg","column_visit":120,"signature":"","favorite_count":0,"follow_count":25,"follower_count":28,"famous_type":0,"autoplay_music":1,"text_preference":1,"client_type":0,"reward_word":"如果喜欢我的作品,请打赏鼓励哦!","member_type":0,"wechat_id":"ojq1ttzU4L8pvI8tf2v9sLekn_E0","country":"中国","province":"海南","city":"海口","career":9,"birthday":19511009,"gender":1,"reg_time":1479853445,"e_id":"","bedge_img":"","label_img":"","review_level":1,"enable_reward_switch":false,"enable_water_mark_switch":1,"plainNickname":"刘东民","member_status":1,"member_img":"","ext":null,"phone_num":"138****5872","head_attach_img":null,"badge":null,"onlive":false,"qualification":null,"biz_info":{"is_biz_user":false,"share_domains":[]},"headwear":{"icon":"","animation":"","config":{},"param":{}},"cover_img_url":"","weibo_id":"","vwen_id":"","im_id":"5ba8ec6f6d91298ce72f467095ffbf26","yx_im_token":"","last_visit_time":1742253454,"ip_address":"139.189.27.35","device_id":"bfc64cdf1127a091:02:00:00:00:00:00","reviewer":0,"review_time":0,"account_state":0,"balance":534,"last_contribution_time":0,"member_expire_time":0,"member_qq_group":0,"web_has_login":0,"longtitude":"110.3184700","latitude":"20.0036540","last_client_type":0,"level":0,"province_user":"海南","city_user":"海口","user_id":6629284,"qq_id":"","apple_id":"","badge_img_url":"","reward_url":"https://www.meipian.cn/wap/reward/view/index.html?mask_id=4l08pu1i&author_user_id=6629284&article_title=%E9%AB%98%E4%B8%80%E6%95%B0%E5%AD%A6%E9%9A%BE%E9%A2%98%E9%9B%86%E9%94%A6","memo_name":""},"content":[{"audio_music_id":0,"ext":{"unique_id":"bec3ed9859091fee3d6dd2fc202a6d2b"},"sectionPublished":true,"source":0,"text":"1.问题:若A=(x|2a+1≤x≤3a-5),B=(x|3≤x≤22),求A属于B成立时,a的取值范围.
解:A包含于B有两种情况,
(1)当A=∅时,2a+1>3a-5,a<6,
(2)当A≠∅时∵A包含于B, 2a+1≤3a-5;
2a+1≥3;3a-5 ≤22,解得6≤a≤9.
综上可知:a≤9.
","type":1},{"audio_music_id":0,"ext":{"unique_id":"aa5847a7207d1d67036f70d61d1d635b"},"sectionPublished":true,"source":0,"text":"2.问题:已知集合A={xlx²+ax+b=0},B=(xlx²+cx+15=0},AUB={3,5},A∩B={3},求a,b,c的值_
解:∵A∩B={3},∴3是x²+cx+15的一个根,
∴3²+3C+15=0,3C=-15-9=-24,C=-8.
又∵AUB={3,5},A∩B={3},A≠B,∴A={3}.
∴3是x²+ax+b=0的唯一的实数根,
∴△=a²-4b=0,∴b=a²/4,代入方程x²+ax+b=0,3²+3a+a²/4=0.
解得a=-6,b=9,
综上所述:a=-6,b=9,c=-8
","type":1},{"audio_music_id":0,"ext":{"unique_id":"05d7cac0fd4f32bab62efb2c34d89762"},"sectionPublished":true,"source":0,"text":"3.问题:若对Vx>1,若x²-4x+a>0恒成立,则实数a的取值范围为( )。
若对Vx≤1,存在2<y<5,使得x²-4x+2a>2y-1成立,则实数a的取值范围是( )。
","type":1},{"audio_music_id":0,"ext":{"unique_id":"d4a11a0985fc4cff388e02df33c8d0dd"},"sectionPublished":true,"source":0,"text":"解析:由x²-4x+a≥0,得a≥4x-x²=-(x-2)²+4,则对V≥1,x² -4x+a≥0恒成立,可得a≥ 4。
记μ=x² -4x+2a,由二次函数定义知,二次函数的对称轴为x=2,所以函数值在x<2时随着x的增大而减小.记v=2y-1,一次函数的函数值随着自变量y的逐渐增大而增大,所以要不等式x²-4x+2a>2y-1恒成立,只需1²-4×1+2a≥2×2-1,解得a≥3.
","type":1}],"mark":0,"gift":{"icon":"https://ss2.meipian.me/app/article_gift_flower_icon_v2.png","amount":0,"mix_icon":"","mix_persent":0,"display":1},"topic":{"has_vote":0,"vote_rank":0,"vote_count":0},"visitor":{"is_share":false,"visitor_id":0,"visitor_user_id":null,"from":null,"channel":null,"theme":null,"in_app":false,"from_web":false,"self_view":false,"timestamp":null,"sign":null,"is_from_app_launch":null,"show_praise":null,"praised":null,"wechat_sign":null,"token":null,"password_v2":null,"visitor_open_id":null,"share_depth":"","visitor_union_id":null,"ua_source":"web","mpuuid":"","isFan":0,"relation_type":0,"member_status":0,"member_img":"","head_attach_img":"","headwear":null,"request":{"attributes":{},"request":{},"query":{},"server":{},"files":{},"cookies":{},"headers":{}},"is_new_guest":0,"first_share_uid":0,"risk_cheat_info":"","is_cheat_risk":false,"page_visit_id":"PC_26100993167f11a521a34c9.69103052","is_good":null,"auth_url":null,"from_auth_callback":0},"watermark":"?watermark/3/image/aHR0cDovL3N0YXRpYzItc3JjLml2d2VuLmNvbS9sb2dvd2F0ZXIucG5n/dy/50/text/QCDliJjkuJzmsJE=/fontsize/320/dx/10/dy/30/fill/I0ZGRkZGRg==/text/576O56-H5Y-377yaNjYyOTI4NA==/fontsize/320/dx/10/dy/10/fill/I0ZGRkZGRg=="}; var detail = ARTICLE_DETAIL; window.model = { detail: ARTICLE_DETAIL }