一道普通算题,破解世界难题-卡迈克尔数(伪素数)

红火

<h1 deep="9">一道普通算题,破解世界难题-卡迈克尔数(伪素数)<br>本人是一个业余数学爱好者,经过刻苦研究,通过这个普通算题,<br>不仅找到了1亿数内255个卡迈克尔数,而且初步找到1亿数外的500个<br>卡迈克尔数。根据卡迈克尔数(伪素数)有一个准则:<br>如果整数n满足如下条件<br>(1) n没有平方因子,即n没有相同的素因子;<br>(2) n是奇数且至少有3个不同的素数因子;<br>(3) 对于n的每一个素数因子p,p-1能够整除n-1;<br>同志们可以验证是否正确。以后我还继续寻找更多的卡迈克尔数。<br><br>1亿以上卡迈克尔数<br>101957401<br>120981601<br>122785741<br>133205761<br>151813201<br>161035057<br>167979421<br>187188001<br>266003101<br>277241401<br>280761481<br>300614161<br>321197185<br>362569201<br>368113411<br>376786561<br>403317421<br>483006889<br>503758801<br>533860309<br>561481921<br>633639097<br>703995733<br>781347841<br>804978721<br>842202361<br>876850801<br>1150270849<br>1232469001<br>1260332137<br>1264145401<br>1423668961<br>1504651681<br>1521792001<br>1592668441<br>1676203201<br>1784291041<br>1919767681<br>2414829781<br>2467813621<br>2479305985<br>2630374741<br>2766901501<br>3044238121<br>3767865601<br>3981047941<br>4189909501<br>4558134673 <br>4776665257<br>5120093089<br>5394826801<br>5673520945<br>7036064101<br>7103660473<br>8379420001<br>8783313601<br>10017782401<br>10238570497<br>10276596961<br>11624584621<br>14496799681<br>15109288129<br>15217092001<br>15278749417<br>15538161961<br>15916824001<br>15920538901<br>16066911121<br>20246615821<br>22716699265<br>23231582881<br>23729234761<br>25594002721<br>25862624705<br>26498875681<br>30712480129<br>31040015617<br>31293845857<br>31340027401<br>31840678801<br>32071969801<br>32541803785<br>34296170401<br>34963007521<br>35717833921<br>39114024769<br>41844332377<br>43721295751<br>45977514241<br>47782272385<br>48556911601<br>55484966881<br>56249663401<br>64181214721<br>64705212721<br>66781063441<br>69994934461<br>75527369281<br>76778776801<br>78229242001<br>79601098501<br>80313963601<br>84954809611<br>86312384761<br>87015731617<br>87433760701<br>93912375601<br>94001094001<br>96375726721<br>99976607641<br>101183118301<br>102738451201<br>113267783377<br>116748967297<br>118605102001<br>121417243921<br>122160500281<br>124778868481<br>128354073601<br>129461238901<br>131553268705<br>131726875969<br>132131082721<br>138303503521<br>139820822401<br>141308002081<br>143832608641<br>146234841481<br>153415802233<br>159451991101<br>159884827201<br>164743070689<br>168202775521<br>171206972161<br>173015236801<br>174029847553<br>174858690601<br>179789996401<br>182327654401<br>185418555841<br>193701843721<br>194106355201<br>197886061801<br>204530157001<br>209726032321<br>209982754081<br>219534095521<br>232250619601<br>241198908721<br>245997259201<br>246383448301<br>261043963489<br>263096955265<br>263610459505<br>279631242241<br>316653643801<br>319736352001<br>333893086801<br>347200719121<br>335152121031<br>366451672861<br>368540455501<br>414878851297<br>432995628241<br>435072195361<br>463503340801<br>481858041601<br>482332575649<br>508014808561<br>513391226881<br>514400922061<br>517800926161<br>522086311297<br>545680793001<br>570817526401<br>567392909161<br>641453995729<br>650741599417<br>651378337345<br>667783116001<br>670265324821<br>690396342121<br>737022421801<br>779766954001<br>783810288001<br>813460927501<br>819146037697<br>841360350601<br>860293156801<br>870142775041<br>883402119601<br>887233860241<br>916983741961<br>918193725541<br>934895139361<br>962898888601<br>977343853501<br>989017417441<br><br></h1> <b>1009514855521<br>1012569679441<br>1015996020481<br>1028766272521<br>1040682541921<br>1041560227441<br>1044373218801<br>1121884884121<br>1268961646177<br>1332148176001<br>1335563174401<br>1348815578761<br>1428425107201<br>1502972415841<br>1507888831501<br>1915784071201<br>1970437734721<br>1724672994661<br>1762739825041<br>2051006968081<br>2074750811281<br>2112186535801<br>2301166596961<br>2180401030081<br>2409269616001<br>2442680604001<br>2516597959681<br>2524473608761<br>2580828264001<br>2606221548001<br>2865385329121<br>3028422651841<br>3101163179401<br>3192107236081<br>3413518886881<br>3800802670561<br>3851449668001<br>3898807410001<br>3949863469441<br>3964336653121<br>3976486324993<br>4046353769017<br>4201568113681<br>4329855432001<br>4381252488901<br>4416990006001<br>4795590257389<br>5048931170881<br>5062560475897<br>5186812031101<br>5197299174145<br>5436213707233<br>5555650309441<br>5366164885201<br>5856523186969<br>5911293155041<br>6189752475901<br>6269910835201<br>6384208283041<br>6507089270785<br>6714593443405<br>7326797742001<br>7420541356801<br>7752799518751<br>7818630170401<br>8016909417001<br>8583171757849<br>9226798536241<br>9318698116561<br>9746347772161<br>9939383452801<br>9962047720261<br>10400353058881<br>10732286185921<br>10626504729985<br>11137322699101<br>11195436539521<br>11892286019881<br>12023706508801<br>12672844307641<br>12768410376961<br>13462457168161<br>14101881425281<br>15168393596161<br>15596616324961<br>15362706840481<br>15530341881601<br>15596616324961<br>16748645560921<br>17314586889601<br>17949937998721<br>18569222954101<br>19034222114881<br>19989608870401<br>20445786047233<br>21527298359281<br>21795558399001<br>22274635959001<br>26746544282641<br>27395091761401<br>28842764333761<br>30724852199041<br>34896061819081<br>36071098721281<br>37178582752585<br>38018515483081<br>38991527566201<br>41211506079745<br>45502171485121<br>46207744411753<br>47880044131921<br>48095373307201<br>51498950313889<br>51846819545521<br>52743010778641<br>54627015256801<br>55006021368481<br>56322103756801<br>60028359353173<br>60701461941121<br>61817253560065<br>66554621691265<br>78002566755301<br>79087073199265<br>81373058559001<br>81940510083601<br>82509011741521<br>87181999236001<br>95747558873413<br>96180728832001<br>102612238404481<br>103093376131681<br>107305333987969<br>108340301487601<br>108977479515001<br>109254004910401<br>109652793830581<br>109952772216001<br>120055458374209<br>128186479618561<br>122685989194561<br>137514992487601<br>140700647276701<br>145204514078401<br>146509877220481<br>152568440073001<br>153456312151297<br>155773422536761<br>161621753572001<br>163771680976221<br>165017982860641<br>181633474948465<br>183445627457821<br>191820369414241<br>197261123736601<br>201438838621441<br>210284064144001<br>217954880910001<br>219281858426401<br>240080945416417<br>244109457244801<br>252098673253441<br>274803911008705<br>287212458944161<br>299315058904801<br>330035925098881<br>348839041874905<br>349661695638401<br>353254339742305<br>360121394882809<br>366890473567801<br>375274118641501<br>381400030408001<br>412544896218001<br>418555183450951<br>434853884757601<br>469205907256081<br>470989858898945<br>484847694088801<br>497272206805921<br>515721014456401<br>524490659524801<br>550059848083201<br>575460942043681<br>610273525932001<br>617983768913281<br>640910818785601 <br>649304963198101<br>671194574932267<br>695996780426641<br>722003053509361<br>727763192151841<br>733780165787761<br>762841887885001<br>820180406066113<br>855246702271501<br>875355068779201<br>938377518341761<br>949803513811921<br>1007193857241601<br>1016431092445441<br>1025139475170721<br>1025351062834561<br>1047602326633601<br>1064122937395057<br>1150921800987841<br>1220546973744001<br>1254714328538245<br>1342389067938073<br>1381508617984021<br>1410071366551681<br>1412874012152065 <br>1475469678043801<br>1478799368386561<br>1525683697650001<br>1570933614863341<br>1646232140817001<br>1666207190688001<br>1726382659932001<br>1750527809904001<br>1778754348516601<br>1840975943166001<br>1863615116284801<br>2001111155103061<br>2162560122783073<br>2302501396521601<br>2452032447795001<br>2493562264754401<br>2795325621249601<br>2904673750324801<br>2991105483091921<br>3051367317180001<br>3178906799501665<br>3296642318658305<br>3503934940306801<br>3608403584160961<br>3932922707114401<br>4375562057717761<br>4435943790801601<br>4457597032072801<br>5025446146163521<br>5125658165147521<br>5243277873556801<br>5372290078780801<br>5580369817261345<br>5607242547187681<br>5646239261724097<br>5709370096773001<br>5730358343784481<br>5914591676666881<br>6849563245659751<br>8053747177425601<br>8457674150819713<br>8542711455751201<br>8871887448397441<br>8962012082534401<br>9015517023737401<br>9405695405151361<br>9562777940996281<br>9857721206632161<br>11167423968412801<br>11220337590178501<br>13808150579865601<br>15056387366995801<br>15245348850597601<br>16838863348419841<br>20297801564026561<br>24416083232593921<br>24568181666651881<br>30520060786933201<br>42295488683958601<br>47641337053947001<br>49135374315886321<br>76853292409300681<br>77765218595824033<br>88781312019995701<br>95002276864432033<br>97983791591202049<br>98055931138280281<br>112203375901178501<br>126886465044358201<br>128692166730914305<br>157630974085666081<br>170198890245468001<br>180835563181363201<br>222566990007922561<br>234138099123406801<br>289547617008119041<br>312184131605808001<br>337410286660846081<br>337805552938860721<br>532687865799247201<br>542450211967501201<br>596036487815616961<br>661956126923193301<br>682691144073042721<br>774620452711254241<br>1874497241847098881<br>6383432269264091041<br>12605988345489273601<br>96901018381203239281<br>474262816513264247681</b><br>

迈克尔

素数

算题

因子

数伪

普通

破解

难题

一道

亿数