二次取值单增减,轴的位置是关键

白水

<p class="ql-block"><span style="color:rgb(176, 79, 187);">二次整取单增减,自变界值必整点</span></p> <p class="ql-block"><span style="color:rgb(176, 79, 187);">(1)法一:两整PK,胜者大</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">由题知,对称轴为x=9/4,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">当x=2时,y</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span><span style="color:rgb(237, 35, 8);">=-(1/4)^</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">当x=3时,y</span><span style="color:rgb(237, 35, 8); font-size:15px;">3</span><span style="color:rgb(237, 35, 8);">=-(3/4)^</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴y</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span><span style="color:rgb(237, 35, 8);">&gt;y</span><span style="color:rgb(237, 35, 8); font-size:15px;">3</span><span style="color:rgb(237, 35, 8);">,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴x≤a+1的最大整数值为2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴a+1&lt;3,∴a&lt;2</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法二:对称得界,取大整</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">由题知,对称轴为x=9/4,</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">x=2时,对称点横坐标x=2x9/4-2=5/2</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">∴x≤a+1&lt;5/2的最大整数值为2,</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">∴a+1&lt;3,∴a&lt;2</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法三:分类讨论,解合并</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">[1]当a+1≤9/4时,a≤5/4;</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">[2]当a+1&gt;9/4时,2x9/4-(a+1)&gt;2</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∴a+1&lt;5/2,∵x为整数</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∴a+1&lt;3,∴a&lt;2;</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">综上,a&lt;2</span></p> <p class="ql-block"><span style="color:rgb(176, 79, 187);">(2)法一:两整PK,胜者大</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">由题知,对称轴为x=5/2,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">当x=2时,y</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span><span style="color:rgb(237, 35, 8);">=-(1/2)^</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">当x=3时,y</span><span style="color:rgb(237, 35, 8); font-size:15px;">3</span><span style="color:rgb(237, 35, 8);">=-(1/2)^</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴y</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span><span style="color:rgb(237, 35, 8);">=y</span><span style="color:rgb(237, 35, 8); font-size:15px;">3</span><span style="color:rgb(237, 35, 8);">,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴x≤a+1的最大整数值为2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴a+1&lt;3,∴a&lt;2</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法二:对称得界,定大整</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">由题知,对称轴为x=5/2,</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">x=2时,对称点横坐标x=2x5/2-2=3</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">∴x≤a+1&lt;3的最大整数解为2,</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">∴a+1&lt;3∴a&lt;2</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法三:分类讨论,解合并</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">[1]当a+1≤5/2时,a≤3/2;</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">[2]当a+1&gt;5/2时,2x5/2-(a+1)&gt;2</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∴a+1&lt;3,∴a&lt;2;</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">综上,a&lt;2</span></p> <p class="ql-block"><span style="color:rgb(176, 79, 187);">(3)法一:两整Pk,胜者大</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">由题知,对称轴为x=11/4,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">当x=2时,y</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span><span style="color:rgb(237, 35, 8);">=-(3/4)^</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">当x=3时,y</span><span style="color:rgb(237, 35, 8); font-size:15px;">3</span><span style="color:rgb(237, 35, 8);">=-(1/4)^</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴y</span><span style="color:rgb(237, 35, 8); font-size:15px;">2</span><span style="color:rgb(237, 35, 8);">&lt;y</span><span style="color:rgb(237, 35, 8); font-size:15px;">3</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴x≤a+1的最大整数值是3</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴a+1&lt;4,∴a&lt;3</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法二:对称得界,定大整</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">由题知,对称轴为x=11/4,</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">x=2时,对称点横坐标x=2x11/4-2=7/2</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">∴x≤a+1&lt;7/2的最大整数解为3,</span></p><p class="ql-block"><span style="color:rgb(255, 138, 0);">∴a+1&lt;4∴a&lt;3</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法三:分类讨论,解合并</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">[1]当a+1≤11/4时,a≤7/4;</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">[2]当a+1&gt;11/4时,2x11/4-(a+1)&gt;2</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∴a+1&lt;7/2,</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∵x为整数∴a+1&lt;4,∴a&lt;3;</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">综上,a&lt;3</span></p> <p class="ql-block"><span style="color:rgb(176, 79, 187);">1、先确定单增减范围内的最大整数</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">2、然后按范围内的最大整数值来确定范围。</span></p> <p class="ql-block"><span style="color:rgb(176, 79, 187);">法一:距轴远近法</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∵-1&lt;0,开口向下,y有最大值,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴越靠近对称轴y值越大。</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∵对称轴为x=a/2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴10-a/2&gt;9</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴a&gt;19</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187);">法二:对称单增</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">对称轴为x=a/2</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∴2a/2-10&gt;9中</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251);">∴a&gt;19</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8);">二次任取单增减,界值不能越轴线</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">对称轴为x=a/2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴10≤a/2</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8);">∴a≥20</span></p>