谢的美篇

鹿泉区实验初级中学党总支

<p>【模型解读详】定点+定长——圆</p> <p>1、如图,在Rt△ABC中,∠C=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是( )。</p><p><br></p><p><br></p> <p>分析:△CEF沿直线EF翻折时,点F为定点,∵CF=PF,∴PF为定线,即动点P到定点F的距离始终不变,即点P在以F为圆心,PF长为半径的圆上运动。</p> <p>例题2:如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF=2,点G为EF的中点,点P为BC上一动点,则PA+PG的最小值为(  )</p> <p>分析:因为EF=2,点G为EF的中点,根据直角三角形斜边上中线的性质得出DG=1,所以G是以D为圆心,以1为半径的圆弧上的点。然后作A关于BC的对称点A′,连接A′D,交BC于P,交以D为圆心,以1为半径的圆于G,此时PA+PG的值最小,最小值为A′G的长。</p><p>如下图所示:</p> <p>∴根据勾股定理求得A′D=5,即可求得A′G=A′D﹣DG=5﹣1=4,从而得出PA+PG的最小值.</p>