<h3><b>数学是一门神奇的学科,其中的悖论是很有趣的。下面就跟着五班的同学们走进悖论,看看它如何引发了第二次数学危机吧😁️^o^</b></h3> <h3>第二期毕氏门徒数学社团社团要求*^_^*</h3><h3>🔅通知🔅 </h3><h3>🐳 活动拓展:第二次数学危机</h3><h3> 第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。</h3><h3> 这次危机的萌芽出现在大约公元前450年,芝诺注意到由于对无限性的理解问题而产生的矛盾,提出了关于时空的有限与无限的四个悖论。</h3><h3>🐳 活动内容:</h3><h3> 同学们可以通过网络或书籍查找第二次数学危机的始末和悖论相关的知识。</h3><h3>🐳 要求:</h3><h3>1.全员参与‼️ </h3><h3>2.参与同学在2月23日下午8点前将学习时的图片和学习感想发至此群‼️ </h3><h3>3.学习内容积极向上‼️</h3> <h3>下面来看看同学们查找的资料吧😊!</h3> <h3>第二次数学危机的萌芽出现在大约公元前450年,芝诺注意到由于对无限性的理解问题而产生的矛盾,提出了关于时空的有限与无限的四个悖论:1."两分法"、2."阿基里斯追不上乌龟"、3."飞矢不动"、4."操场或游行队伍"。</h3><h3>我比较感兴趣的是“飞矢不动”。芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。中国古代的名家惠施也提出过,"飞鸟之景,未尝动也"的类似说法。</h3><h3>飞矢悖论是从时间的可分为出发点的,但是他没有意识到时间的连续性,时间的不可分性,也即是时间不可分割;如果时间可分那就有没有时间的瞬间,也就存在所谓的长生不老等情况了;所以箭在某一位置时按时间段(瞬间)来说是一致的,即静止;但是,箭在任何一个位置时,时间是不一样的。 </h3><h3>18世纪的数学思想的确是不严密的、直观的,强调形式的计算而不管基础的可靠。直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。19世纪70年代初,威尔斯特拉斯、狄德金、康托等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析建立在实数理论的严格基础之上。第二次数学危机也促进了19世纪的分析严格化、代数抽象化以及几何非欧化的进程。</h3><h3>7.5 吴欣妍</h3> <h3>第二次数学危机读后感:</h3><h3>第二次数学危机爆发</h3><h3>在微积分大范围应用的同时,关于微积分基础的问题也越来越严重。关键问题就是无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。</h3><h3>无穷小量究竟是不是零?两种答案都会导致矛盾。牛顿对它曾作过三种不同解释:1669年说它是一种常量;1671年又说它是一个趋于零的变量;1676年它被"两个正在消逝的量的最终比"所代替。但是,他始终无法解决上述矛盾。莱布尼兹曾试图用和无穷小量成比例的有限量的差分来代替无穷小量,但是他也没有找到从有限量过渡到无穷小量的桥梁。</h3><h3>英国大主教贝克莱于1734年写文章,攻击流数(导数)"是消失了的量的鬼魂……能消化得了二阶、三阶流数的人,是不会因吞食了神学论点就呕吐的。"他说,用忽略高阶无穷小而消除了原有的错误,"是依靠双重的错误得到了虽然不科学却是正确的结果"。贝克莱虽然也抓住了当时微积分、无穷小方法中一些不清楚不合逻辑的问题,不过他是出自对科学的厌恶和对宗教的维护,而不是出自对科学的追求和探索。</h3><h3>当时一些数学家和其他学者,也批判过微积分的一些问题,指出其缺乏必要的逻辑基础。例如,罗尔曾说:"微积分是巧妙的谬论的汇集。"在那个勇于创造时代的初期,科学中逻辑上存在这样那样的问题,并不是个别现象。</h3><h3>18世纪的数学思想的确是不严密的、直观的,强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。</h3><h3>这次危机不但没有阻碍微积分的迅猛发展和广泛应用,反而让微积分驰骋在各个科技领域,解决了大量的物理问题、天文问题、数学问题,大大推进了工业革命的发展。就微积分自身而言,经过本次危机的"洗礼",其自身得到了不断的系统化,完整化,扩展出了不同的分支,成为了18世纪数学世界的"霸主"。</h3><h3>七年五班 宫瑞阳</h3> <h3>第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。由此我们能够得知,每个精准知识与思想的背后,都需要不断的研究,思考,完成后还要想办法推导或推翻,才能得到最终的正确答案。</h3><h3> 金祉含</h3> <h3>无穷小量究竟是不是零?两种答案都会导致矛盾。牛顿对它曾作过三种不同解释:1669年说它是一种常量;1671年又说它是一个趋于零的变量;1676年它被“两个正在消逝的量的最终比”所代替。但是,他始终无法解决上述矛盾。莱布尼兹曾试图用和无穷小量成比例的有限量的差分来代替无穷小量,但是他也没有找到从有限量过渡到无穷小量的桥梁。当时一些数学家和其他学者,也批判过微积分的一些问题,指出其缺乏必要的逻辑基础。例如,罗尔曾说:“微积分是巧妙的谬论的汇集。”在那个勇于创造时代的初期,科学中逻辑上存在这样那样的问题,并不是个别现象。18世纪的数学思想的确是不严密的、直观的,强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。</h3><h3> 7.5张靖敏</h3> <h3>第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?</h3><h3>直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。</h3><h3>而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。</h3><h3> 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础:无穷小的问题,提出了所谓贝克莱悖论。他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬的。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,导致了数学史上的第二次数学危机。</h3><h3> 马琳智</h3> <h3>看了这么多资料,那么悖论到底是什么呢?第二次数学危机又从何而来呢?下面我来介绍一下。</h3> <h3>悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。</h3> <h3>第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。</h3> <h3>这些悖论中,阿喀琉斯与龟是最著名的,下面,我们就来通过一段视频了解一下这个悖论吧*^◎^*</h3> <h3>怎么样,看完了这段视频,大家对悖论是不是了解得更深了呢?感兴趣的同学课下也可以自己查一查有关这方面的知识^o^</h3> <h3>我们和老师一起研究悖论(*^@^*)</h3> <h3>通过这两次社团,我们知道了前两次数学危机的起因和结果,还了解了有关悖论和无理数的知识。数学的海洋无边无际,这两次社团只能让我们看到其中的一滴微不足道的海水。希望通过丰富多彩的社团活动,可以激发同学们对数学的学科兴趣~@^_^@~数学,其实并不枯燥哟^ω^</h3>